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source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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A question to ChatGPT

Q: When is it better to use GAN and when diffusion models?

A: The choice between using GANs and diffusion models depends on the specific characteristics of the data being 

generated and the requirements of the generative modeling task at hand.

In general, GANs are often preferred for tasks that require generating high-quality, visually realistic images, as they have 

been shown to produce photorealistic images with fine details and textures. GANs are also well-suited for image-to-image 

translation tasks, such as style transfer or super-resolution, where the goal is to modify an existing image in a particular way 

while preserving its underlying structure and content.

On the other hand, diffusion models are often preferred for tasks that involve modeling complex distributions or generating 

samples that exhibit long-range dependencies. Diffusion models have been shown to be effective at modeling complex 

image and video datasets, and can generate high-quality samples that capture the underlying structure and dynamics of the 

data. Diffusion models can also be used for tasks such as image denoising or inpainting, where the goal is to remove noise 

or missing information from an image while preserving its structure and content.



OpenAI’s CLIP

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 

Learning Transferable Visual Models From Natural Language Supervision. ICML 2021 https://arxiv.org/abs/2103.00020 https://openai.com/research/clip

● encodes image, and text to similar embeddings

● is trained with contrastive learning, maximizing cosine similarity of corresponding image and text

● CLIP’s output image embeddings contain both style and semantics

● is used in DALL-E 1, DALL-E 2, image-text classification

https://arxiv.org/abs/2103.00020
https://openai.com/research/clip


CLIP Architecture

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 

Learning Transferable Visual Models From Natural Language Supervision. ICML 2021 https://arxiv.org/abs/2103.00020 https://openai.com/research/clip

● text and image have separate transformer encoders

● visual encoder is ViT (vision transformer)

● text encoder is GPT-2 transformer

● the fixed-length text embedding is extracted from [EOS] token position

● text token embeddings and image patch embeddings also available

● trained on 256 GPUs for 2 weeks

https://arxiv.org/abs/2103.00020
https://openai.com/research/clip
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Autoencoders (non-variational)

Unsupervised method for learning latent features 

from data without any labels.

Features need to be lower dimensional than the 

data.

Limitation: no way to produce any new content

Encoder

Input data

Features

Decoder

Reconstructed 

input data



Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

● VAE is an autoencoder that learns latent features from data and enables 

generative process.

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

● VAE is an autoencoder that learns latent features from data and enables 

generative process.

● Instead of encoding an input as a single point, VAE encodes it as a 

distribution over the latent space.

https://arxiv.org/abs/1312.6114
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Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114
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https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Decoder neural network represent p(x|z) where x is an image, z is latent features to generate x.

Assume prior p(z) is standard unit diagonal Gaussian.

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Decoder neural network represent p(x|z) where x is an image, z is latent features to generate 

x.

Assume prior p(z) is standard unit diagonal Gaussian.

How to train this model?

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Decoder neural network represent p(x|z) where x is an image, z is latent features to generate 

x.

Assume prior p(z) is standard unit diagonal Gaussian.

How to train this model?

Maximize likelihood of data

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Maximize likelihood of data

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Maximize likelihood of data

Problem: impossible to integrate over all z

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Maximize likelihood of data

Bayes’ Rule: 

https://arxiv.org/abs/1312.6114
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Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Maximize likelihood of data

Bayes’ Rule: 

Problem: no way to compute

Solution: train another network (encoder) that learns 

https://arxiv.org/abs/1312.6114
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Variational Autoencoders (VAE)

Jointly train encoder q and decoder p 
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Variational Autoencoders (VAE)

Kullback-Leibler Divergence:



Variational Autoencoders (VAE)

Kullback-Leibler Divergence:

=> dropping the last term gives a lower bound on the data likelihood 



Variational Autoencoders (VAE)



Variational Autoencoders (VAE)

Jointly train encoder q and decoder p to maximize the variational lower bound

on the data likelihood

Encoder Network Decoder Network



Variational Autoencoders (VAE)

Closed form solution when      is diagonal Gaussian and p is unit Gaussian:



Variational Autoencoders (VAE)

Closed form solution when      is diagonal Gaussian and p is unit Gaussian:

is data reconstruction term
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Variational Autoencoders (VAE)

Train by maximize the variational lower bound.  

1. The input is encoded as distribution over the latent 

space

2. Encoder output should match prior p(z)

3. A point from the latent space is sampled from that 

distribution

4. The sampled point is decoded

5. The reconstruction error is computed

Sample from z



Variational Autoencoders (VAE)

Learned data manifold for generative models with two-dimensional latent space:

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes, ICLR 2014 https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1312.6114


Discrete Variational Auto-Encoder (dVAE)

● introduced in VQ-VAE 1 [1] and VQ-VAE-2 [2]

● image encoder maps to latent 32x32 grid of embeddings

● vector quantization maps to 8k code words

● decoder maps from quantized grid to the image

● copy gradients from decoder input z to the encoder output

[1] Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu. Neural Discrete Representation Learning. NeurIPS 2017 https://arxiv.org/abs/1711.00937

[2] Ali Razavi, Aaron van den Oord, Oriol Vinyals. Generating Diverse High-Fidelity Images with VQ-VAE-2. NeurIPS 2019 https://arxiv.org/abs/1906.00446

https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
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Autoregressive Models



Pixel Recurrent Neural Networks

Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu. Pixel Recurrent Neural Networks. ICML 2016



DALL-E 1

● introduced by OpenAI

● generates 256×256 images from text via dVAE inspired by VQ-VAE-2

● autoregressive-ly generates image tokens from textual tokens on a discrete latent space

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 

https://arxiv.org/abs/2102.12092

https://arxiv.org/abs/2102.12092


DALL-E 1 Training

1. train encoder and decoder image of image into 32x32 grid of 8k possible code word tokens 

(dVAE)

2. concatenate encoded text tokens with image tokens into single array

3. train to predict next image token from the preceding tokens (autoregressive transformer)

4. discard the image encoder, keep only image decoder and next token predictor

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 

https://arxiv.org/abs/2102.12092

https://arxiv.org/abs/2102.12092


DALL-E 1 Prediction

1. encode input text to text tokens

2. iteratively predict next image token from the learned codebook

3. decode the image tokens using dVAE decoder

4. select the best image using CLIP model ranker

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 

https://arxiv.org/abs/2102.12092

https://arxiv.org/abs/2102.12092


DALL-E 1 Discrete Variational Auto-Encoder (dVAE)

● instead of copying gradients annealing (categorical reparameterization with gumbel-softmax)

● promote codebook utilization using higher KL-divergence weight

● decoder is conv2d, decoder block (4x relu + conv), upsample (tile bigger array), repeat

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 

https://arxiv.org/abs/2102.12092

https://arxiv.org/abs/2102.12092


DALL-E 1 Results

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 

https://arxiv.org/abs/2102.12092

https://arxiv.org/abs/2102.12092


DALL-E 1 Results

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 

https://arxiv.org/abs/2102.12092

https://arxiv.org/abs/2102.12092


Paella

Dominic Rampas, Pablo Pernias, Elea Zhong, Marc Aubreville. Fast Text-Conditional Discrete Denoising on Vector-Quantized Latent Spaces. 2022 https://arxiv.org/abs/2211.07292

https://arxiv.org/abs/2211.07292
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Paella

Dominic Rampas, Pablo Pernias, Elea Zhong, Marc Aubreville. Fast Text-Conditional Discrete Denoising on Vector-Quantized Latent Spaces. 2022 https://arxiv.org/abs/2211.07292

https://arxiv.org/abs/2211.07292


Phenaki

The water is magical

Prompts used:

A photorealistic teddy bear is swimming 

in the ocean at San Francisco

The teddy bear goes under water

The teddy bear keeps swimming under 

the water with colorful fishes

A panda bear is swimming under water

Chilling on the beach

Prompts used:

A teddy bear diving in the ocean

A teddy bear emerges from the water

A teddy bear walks on the beach

Camera zooms out to the teddy bear in 

the campfire by the beach

Fireworks on the spacewalk

Prompts used:

Side view of an astronaut is walking 

through a puddle on mars

The astronaut is dancing on mars

The astronaut walks his dog on mars

The astronaut and his dog watch 

fireworks

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, Dumitru Erhan.

Phenaki: Variable Length Video Generation From Open Domain Textual Description. 2022 https://arxiv.org/abs/2210.02399

https://phenaki.video

https://arxiv.org/abs/2210.02399
https://phenaki.video


Phenaki

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, Dumitru Erhan.
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Phenaki

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, Dumitru Erhan.

Phenaki: Variable Length Video Generation From Open Domain Textual Description. 2022 https://arxiv.org/abs/2210.02399

https://phenaki.video

https://arxiv.org/abs/2210.02399
https://phenaki.video
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Diffusion Models
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Diffusion Models

Diffusion models are inspired by non-equilibrium thermodynamics. They define a Markov chain of diffusion 

steps to slowly add random noise to data and then learn to reverse the diffusion process to construct 

desired data samples from the noise. Unlike VAE or flow models, diffusion models are learned with a fixed 

procedure and the latent variable has high dimensionality (same as the original data).

source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Slide Credits

CVPR 2022 Tutorial

Denoising Diffusion-based Generative Modeling

by Karsten Kreis, Ruiqi Gao and Arash Vahdat

https://cvpr2022-tutorial-diffusion-models.github.io

https://cvpr2022-tutorial-diffusion-models.github.io


























DALL-E 2

● introduced by OpenAI 

● generates 1024 x 1024 images from text using diffusion models.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

https://openai.com/product/dall-e-2

https://arxiv.org/abs/2204.06125
https://openai.com/product/dall-e-2


DALL-E 2

1. generates a CLIP model text embedding for text caption

2. “prior” network generates CLIP image embedding from text embedding

3. diffusion decoder generates image from the image embedding

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

https://openai.com/product/dall-e-2

https://arxiv.org/abs/2204.06125
https://openai.com/product/dall-e-2


DALL-E 2 training

1. generates a CLIP model text embedding for text caption

2. “prior” network generates CLIP image embedding from text embedding

3. diffusion decoder generates image from the image embedding

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

https://openai.com/product/dall-e-2

https://arxiv.org/abs/2204.06125
https://openai.com/product/dall-e-2


DALL-E 2 training

● Can vary images while preserving style and semantics in the embeddings

● Authors found diffusion models more efficient and higher quality compared to autoregressive

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

https://openai.com/product/dall-e-2

https://arxiv.org/abs/2204.06125
https://openai.com/product/dall-e-2


DALL-E 2 evaluation results

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

https://openai.com/product/dall-e-2

https://arxiv.org/abs/2204.06125
https://openai.com/product/dall-e-2


DALL-E 2 Limitations

A family dining for Christmas A hyperrealistic man's face 

smiling with a pair of 

sunglasses

A green-eyed woman with 

freckles showing happines

A green-eyed woman with 

freckles showing disgust



Midjourney

Capture the essence of a young footballer wearing 

the Paris Saint-Germain cinematic uniform through 

an extreme close-up portrait, focusing on the 

intricate details of her face and expressions, very 

detailed, Octane Render, cinematic, digital art

animated blonde blue eyes love tattoo soft 

male guy enhanced by ai smile defined --q 

2 --s 750

surprised and happy man realistic



Midjourney

eiffel tower in space with an alien on top model and robot in fashion show, public, 

cyberpunk,small robot ,red road , 

cyberpunk,8k rendering



Latent Diffusion Models

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

High-Resolution Image Synthesis with Latent Diffusion Models. 2022 https://arxiv.org/abs/2112.10752

https://arxiv.org/abs/2112.10752


Latent Diffusion Models

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

High-Resolution Image Synthesis with Latent Diffusion Models. 2022 https://arxiv.org/abs/2112.10752

https://arxiv.org/abs/2112.10752


Latent Diffusion Models

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

High-Resolution Image Synthesis with Latent Diffusion Models. 2022 https://arxiv.org/abs/2112.10752

https://arxiv.org/abs/2112.10752


Stable Diffusion

Prompt: realistic smiling woman

https://stablediffusionweb.com

https://stablediffusionweb.com


Make-A-Video

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, Yaniv Taigman.

Make-A-Video: Text-to-Video Generation without Text-Video Data. 2022 https://arxiv.org/abs/2209.14792

https://makeavideo.studio

A teddy bear painting a portrait Robot dancing in times square Cat watching TV with a remote 

in hand

A fluffy baby sloth with an 

orange knitted hat trying to 

figure out a laptop close up 

highly detailed studio lighting 

screen reflecting in its eye

https://arxiv.org/abs/2209.14792
https://makeavideo.studio


Make-A-Video architecture

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, Yaniv Taigman.

Make-A-Video: Text-to-Video Generation without Text-Video Data. 2022 https://arxiv.org/abs/2209.14792

https://makeavideo.studio

https://arxiv.org/abs/2209.14792
https://makeavideo.studio
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Generative Adversarial Networks
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Information Processing Systems (NeurIPS) 2014.



● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .

● Idea: Introduce a latent variable     with simple prior         .

● Sample               and pass to a Generator Network 

● Then    is a sample from the Generator distribution      . Want  

Generative Adversarial Networks

Gz

Generator 

Network

Generated 

sample

Real 

sample

D

Discriminator 

Network Fake

Real

Train Discriminator Network D to 

classify data as real or fake (1/0)

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.
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Train Generator Network G to convert  

into fake data     sampled from        



Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.
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Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game
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Discriminator wants D(x)=1 for 

real data
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Train G and D using alternating gradient updates:

1. Update     : 

2. Update      



Generative Adversarial Networks: vanishing gradient 
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● Gradient goes to 0 if D is confident, i.e. 

● Minimize                                                      for generator
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Jensen-Shannon Divergence:

JSD is always nonnegative and zero when the two distributions are equal 

=> the global minimum is 



Generative Adversarial Networks: Optimality

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 
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Summary: The global minimum of the minimax game happens when:

1.                                                      (Optimal discriminator for any G)

2.                                                       (Optimal generator for optimal D)



GAN architecture summary

Jointly train two networks:

Discriminator classifies data as real or fake

Generator generates data that fools the discriminator
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Generative Adversarial Networks: results

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.



Generative Adversarial Networks: DC-GAN

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

https://arxiv.org/search/cs?searchtype=author&query=Metz%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Metz%2C+L


Generative Adversarial Networks: Interpolation

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

https://arxiv.org/search/cs?searchtype=author&query=Metz%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Metz%2C+L
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Conditional GANs

[b] Mehdi Mirza, Simon Osindero. Conditional Generative Adversarial Nets. 2014

[c] Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016



Conditional GANs

Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016



Conditional GANs: BigGAN

Andrew Brock, Jeff Donahue, Karen Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 2019 https://arxiv.org/abs/1809.11096

https://arxiv.org/abs/1809.11096


Conditional GANs: Conditional Batch Normalization

Vincent Dumoulin, Jonathon Shlens, Manjunath Kudlur, A Learned Representation For Artistic Style. ICLR 2017 https://arxiv.org/abs/1610.07629

The input activation x is normalized 

across spatial dimensions and scaled 

and shifted using style-dependent 

parameter vectors     , 

where    indexes the style label.

https://arxiv.org/abs/1610.07629


Image Super-Resolution

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi. 
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. CVPR 2017 https://arxiv.org/abs/1609.04802
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Image-to-Image Translation: Pix2Pix

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017 https://arxiv.org/abs/1611.07004

https://arxiv.org/abs/1611.07004


Image-to-Image Translation: Pix2Pix

Objective:

where
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Unpaired Image-to-Image Translation: CycleGAN
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Label Map to Image

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu. Semantic Image Synthesis with Spatially-Adaptive Normalization. CVPR 2019 https://arxiv.org/abs/1903.07291
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StyleGAN

Tero Karras, Samuli Laine, Timo Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019



Video Generation

Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, Nicu Sebe. First Order Motion Model for Image Animation. NeurIPS 2019
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Video Generation. Everybody Dance Now

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now. ICCV 2019



Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now. ICCV 2019

Video Generation. Everybody Dance Now



Problems of GANs

● Mode collapse:
○ G collapses providing limited sample variety

● Non-convergence:
○ model parameters oscillate, destabilize and never converge

● Diminished gradient:
○ D is so successful that the G gradient vanishes and learns nothing



Mode collapse

Real-life data is multimodal (10 in MNIST)

Mode collapse: when few modes generated



Partial mode collapse

The generator produces realistic and 

diverse samples, but much less diverse 

than the real-world data distribution.



Solutions to mode collapse

● Wasserstein loss [1]
○ Trains the discriminator to optimality without worrying about vanishing gradients.

○ If the discriminator doesn't get stuck in local minima, it learns to reject the outputs that the 

generator stabilizes on.

● Unrolling [2]
○ Uses a generator loss function that incorporates not only the current discriminator's 

classifications, but also the outputs of future discriminator versions

○ The generator can't over-optimize for a single discriminator.

[1] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. 2017 https://arxiv.org/abs/1701.07875

[2] Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein. Unrolled Generative Adversarial Networks. https://arxiv.org/abs/1611.02163

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1611.02163


Wasserstein GAN. Criticizing is easy

Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. 2017 https://arxiv.org/abs/1701.07875

● GAN can optimize the discriminator easier than the generator.
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● GAN can optimize the discriminator easier than the generator.

● An optimal discriminator produces good information for the generator to 

improve. But if the generator is not doing a good job yet, the gradient for the 

generator diminishes and the generator learns nothing

Original GAN generator’s gradient:

Alternative:

Problem: large variance of gradients 

that make the model unstable

https://arxiv.org/abs/1701.07875
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where

● sup is the least upper bound

● f is a 1-Lipschitz function following 

constraint:

We can build a deep network to calculate the 

Wasserstein distance.

This network is very similar to the discriminator, 

just without the sigmoid function and outputs a 

scalar score rather than a probability.

https://arxiv.org/abs/1701.07875
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● Wasserstein criterion allows us to train D until optimality. When the criterion reaches the optimal 

value, it simply provides a loss to the generator that we can train as any other neural network.
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● Wasserstein criterion allows us to train D until optimality. When the criterion reaches the optimal 

value, it simply provides a loss to the generator that we can train as any other neural network.

● We no longer need to balance G and D capacity properly.

● Wasserstein loss leads to a higher quality of the gradients to train G.

● WGANs are more robust than common GANs to the architectural choices for the generator and 

hyperparameter tuning

https://arxiv.org/abs/1701.07875


Evaluation

The objective function for the generator and the discriminator usually measures 

how well they are doing relative to the opponent.

It is not a good metric in measuring the image quality or its diversity.



Evaluation

● Inception Score (IS) [1]

● Frechet Inception Distance (FID) [2]

● Human-based ratings and preference judgments

[1] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

NeurIPS 2017 https://arxiv.org/abs/1706.08500

https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1706.08500


Inception Score (IS)

IS uses two criteria in measuring the performance of GAN:

● The quality of the generated images

● their diversity

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498
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where y is the label and x is the generated data

● Diversity: calculate marginal probability:
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Inception Score (IS)

● Quality: use an Inception network to predict conditional probability p(y|x) —

where y is the label and x is the generated data

● Diversity: calculate marginal probability:

We want

● the conditional probability p(y|x) to be highly predictable (low entropy)  i.e. 

given an image, we should know the object type easily

● the data distribution p(y) should be uniform (high entropy)

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498
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Inception Score (IS)

Compute their KL-divergence to combine these two criteria:

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1606.03498


Inception Score (IS)

Limitations:

● IS is limited by what the Inception classifier can detect, which is linked to the 

training data (ILSVRC)

● IS can misrepresent the performance if it only generates one image per class. 

p(y) will still be uniform even though the diversity is low

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1606.03498


Frechet Inception Distance (FID)

● Use the Inception network to extract features from an intermediate layer

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 
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Frechet Inception Distance (FID)

● Use the Inception network to extract features from an intermediate layer

● Model data distribution for these features using a multivariate Gaussian 

distribution with mean µ and covariance Σ

● The FID between the real images x and generated images g:

where Tr sums up all the diagonal elements

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

NeurIPS 2017 https://arxiv.org/abs/1706.08500
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Frechet Inception Distance (FID)

● Lower FID values mean better image quality and diversity

● FID is sensitive to mode collapse, the distance increases when modes are 

missed

● FID is more robust to noise than IS. If the model only generates one image 

per class, the distance will be high

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

NeurIPS 2017 https://arxiv.org/abs/1706.08500

https://arxiv.org/abs/1706.08500


Q&A


