Lecture 8 Generative Adversarial Networks

Deep Learning for Computer Vision Valeriya Strizhkova 9 November 2021

About myself

Valeriya Strizhkova

1st year PhD student @ Inria, STARS team

https://scholar.google.ru/citations?user=6n5PrUAAAAAJ&hl

https://github.com/valerystrizh

Lecture Structure

- GANs: Valeriya Strizhkova
- DeepFake Detection: Dr. Antitza Dantcheva

Outline

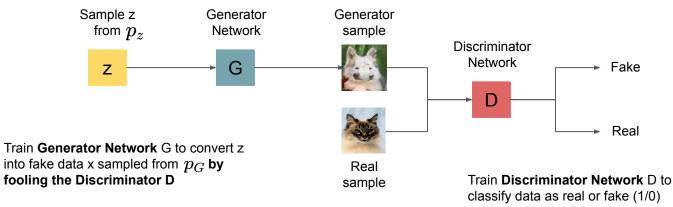
- Basic idea of GAN
- Image generation
 - Conditional GAN
 - Image-to-image translation (Pix2Pix, CycleGAN)
 - StyleGAN
- Video Generation

Generative Adversarial Networks

- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).
- Sample $z \sim p(z)$ and pass to a Generator Network x = G(z)
- Then x is a sample from the Generator distribution p_G . Want $p_G = p_{data}$

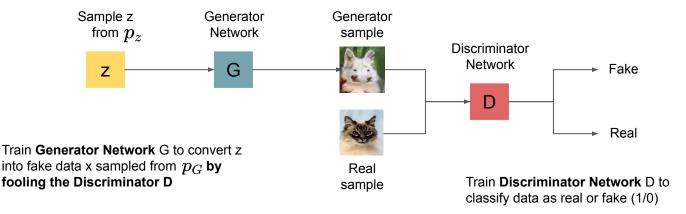
Generative Adversarial Networks

- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).
- Sample $z \sim p(z)$ and pass to a Generator Network x = G(z)
- Then x is a sample from the Generator distribution p_G . Want $p_G = p_{data}$



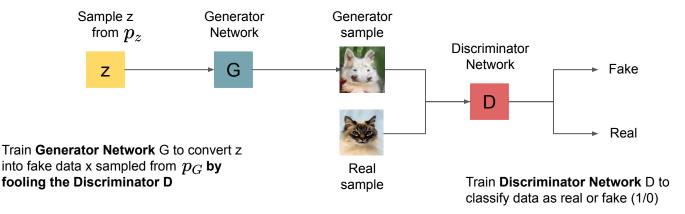
Jointly train generator G and discriminator D with a minimax game

$$\min\max(E_{x\sim p_{data}}[\log D(x)]+E_{z\sim p(z)}[\log(1-D(G(z)))])$$

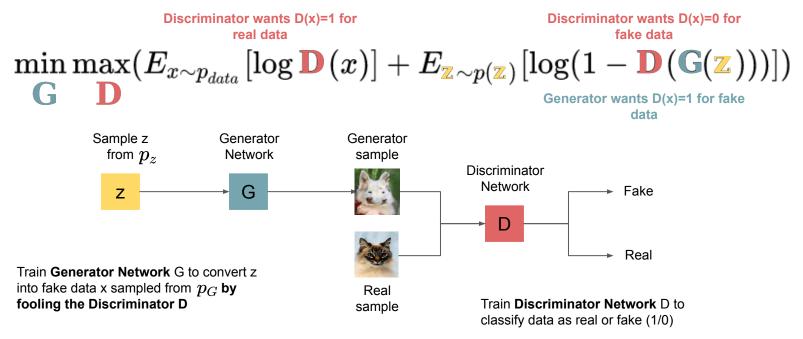


Jointly train generator G and discriminator D with a minimax game

$$\min_{\mathbf{G}} \max_{\mathbf{D}} (E_{x \sim p_{data}}[\log D(x)] + E_{z \sim p(z)}[\log(1 - D(G(z)))])$$



Jointly train generator G and discriminator D with a minimax game



Jointly train generator G and discriminator D with a minimax game

$$\begin{split} \min \max & (E_{x \sim p_{data}} \left[\log \mathbf{D}(x) \right] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z}))) \right]) \\ & = \min \max \mathbf{V}(\mathbf{G}, \mathbf{D}) \\ & \mathbf{G} \quad \mathbf{D} \end{split}$$

Train G and D using alternating gradient updates:

1. Update
$$\mathbf{D} = \mathbf{D} + \alpha_{\mathbf{D}} \frac{\delta \mathbf{V}}{\delta \mathbf{D}}$$

2. Update $\mathbf{G} = \mathbf{G} + \alpha_{\mathbf{G}} \frac{\delta \mathbf{V}}{\delta \mathbf{G}}$

Generative Adversarial Networks: vanishing gradient

$$\min \max_{G} V(G,D) = \min_{G} \max_{D} (E_{x \sim p_{data}} \left[\log D(x)
ight] + rac{E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight])}{G D}$$

$$\begin{aligned} \nabla_{\Theta_G} V(G,D) &= \nabla_{\Theta_G} E_{z \sim q(z)} \left[log(1 - D(G(z))) \right] \\ \nabla_a \log(1 - \sigma(a)) &= \frac{-\nabla_a \sigma(a)}{1 - \sigma(a)} = \frac{-\sigma(a)(1 - \sigma(a))}{1 - \sigma(a)} = -\sigma(a) = -D(G(z)) \\ D(G(z)) \rightarrow 0 \\ & D(G(z)) \rightarrow 0 \end{aligned}$$

$$\\ \bullet \quad \text{Minimize } \left[-E_{z \sim p(z)} \left[\log(D(G(z))) \right] \right] \text{ for Generator instead} \end{aligned}$$

$$\\ \text{(keep Discriminator as it is)} \end{aligned}$$

$$egin{aligned} &\min\max_G (E_{x\sim p_{data}}\left[\log D(x)
ight]+E_{z\sim p(z)}\left[\log(1-D(G(z)))
ight])\ &=\min\max_G (E_{x\sim p_{data}}\left[\log D(x)
ight]+E_{x\sim p_G}\left[\log(1-D(x))
ight])\ &G\ D\ &=\min\max_G \int_X (p_{data}(x)\log D(x)+p_G(x)\log(1-D(x)))dx\ &=\min_G \int_X \max_D (p_{data}(x)\log D(x)+p_G(x)\log(1-D(x)))dx \end{aligned}$$

$$egin{aligned} f(y) &= a\log y + b\log(1-y) \ f'(y) &= rac{a}{y} - rac{b}{1-y} \ f'(y) &= 0 \Leftrightarrow y = rac{a}{a+b} \end{aligned}$$

Optimal Discriminator:

$$D^*_G(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{x \sim p_G} \left[\log (1 - D(x))
ight]) \ &= \min_G \int_X (p_{data}(x) \log D^*_G(x) + p_G(x) \log (1 - D^*_G(x))) dx \ & G \end{aligned}$$

Optimal Discriminator:
$$\ D^*_G(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log(1 - D(G(z)))
ight]) \ &= \min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{x \sim p_G} \left[\log(1 - D(x))
ight]) \ &= \min_G \int_X (p_{data}(x) \log D^*_G(x) + p_G(x) \log(1 - D^*_G(x))) dx \ &= \min_G \int_X (p_{data}(x) \log rac{p_{data}(x)}{p_{data}(x) + p_G(x)} + p_G(x) \log rac{p_G(x)}{p_{data}(x) + p_G(x)}) dx \end{aligned}$$

Optimal Discriminator:
$$D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log(1 - D(G(z)))
ight]) \ &= \min \int_X (p_{data}(x) \log D^*_G(x) + p_G(x) \log(1 - D^*_G(x))) dx \ &G \ &= \min_G \int_X (p_{data}(x) \log rac{p_{data}(x)}{p_{data}(x) + p_G(x)} + p_G(x) \log rac{p_G(x)}{p_{data}(x) + p_G(x)}) dx \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight]) \end{aligned}$$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log(1 - D(G(z)))
ight]) \ &= \min_G \int_X (p_{data}(x) \log D^*_G(x) + p_G(x) \log(1 - D^*_G(x))) dx \ &= \min_G \int_X (p_{data}(x) \log rac{p_{data}(x)}{p_{data}(x) + p_G(x)} + p_G(x) \log rac{p_G(x)}{p_{data}(x) + p_G(x)}) dx \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight]) \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight]) \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight] - \log 4) \end{aligned}$$

$$\min_G \max_D (E_{x \sim p_{data}}[\log D(x)] + E_{z \sim p(z)}[\log(1 - D(G(z)))]) \ = \min_G (E_{x \sim p_{data}}[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}] + E_{x \sim p_G}[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}] - \log 4)$$

Kullback-Leibler Divergence:
$$\,KL(p,q)=E_{x\sim p}[lograc{p(x)}{q(x)}]$$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight] - \log 4) \ &= \min_G (KL(p_{data}, rac{p_{data} + p_G}{2}) + KL(p_G, rac{p_{data} + p_G}{2}) - \log 4) \end{aligned}$$

Kullback-Leibler Divergence:
$$\,KL(p,q)=E_{x\sim p}[lograc{p(x)}{q(x)}]$$

$$egin{aligned} &\min_{G} \max_{D}(E_{x \sim p_{data}}\left[\log D(x)
ight]+E_{z \sim p(z)}\left[\log(1-D(G(z)))
ight])\ &=\min_{G}(E_{x \sim p_{data}}\left[\lograc{p_{data}(x)}{p_{data}(x)+p_{G}(x)}
ight]+E_{x \sim p_{G}}\left[\lograc{p_{G}(x)}{p_{data}(x)+p_{G}(x)}
ight]-\log4)\ &=\min_{G}(KL(p_{data},rac{p_{data}+p_{G}}{2})+KL(p_{G},rac{p_{data}+p_{G}}{2})-\log4) \end{aligned}$$

Jensen-Shannon Divergence: $JSD(p,q) = \frac{1}{2}KL(p,\frac{p+q}{2}) + \frac{1}{2}KL(q,\frac{p+q}{2})$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight] - \log 4) \ &= \min_G (KL(p_{data}, rac{p_{data} + p_G}{2}) + KL(p_G, rac{p_{data} + p_G}{2}) - \log 4) \ &= \min_G (2 imes JSD(p_{data}, p_G) - \log 4) \end{aligned}$$

Jensen-Shannon Divergence: $JSD(p,q) = \frac{1}{2}KL(p,\frac{p+q}{2}) + \frac{1}{2}KL(q,\frac{p+q}{2})$

$$egin{aligned} &\min \max_G (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min_G (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_G(x)}
ight] + E_{x \sim p_G} \left[\log rac{p_G(x)}{p_{data}(x) + p_G(x)}
ight] - \log 4) \ &= \min_G (KL(p_{data}, rac{p_{data} + p_G}{2}) + KL(p_G, rac{p_{data} + p_G}{2}) - \log 4) \ &= \min_G (2 imes JSD(p_{data}, p_G) - \log 4) \end{aligned}$$

JSD is always nonnegative and zero when the two distributions are equal

=> the global minimum is
$$p_{data} = p_G$$

Jensen-Shannon Divergence: $JSD(p,q) = \frac{1}{2}KL(p,\frac{p+q}{2}) + \frac{1}{2}KL(q,\frac{p+q}{2})$

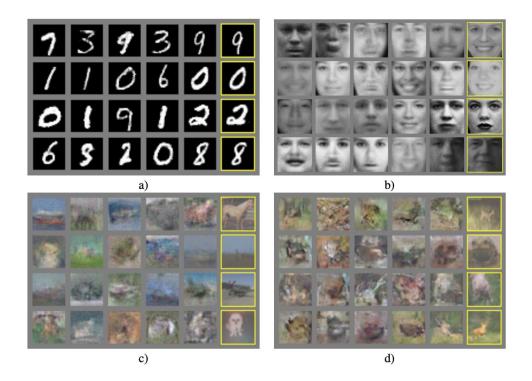
$$\min_{G} \max_{D} (E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log(1 - D(G(z)))
ight])$$

$$= \min_G (2*JSD(p_{data},p_G) - \log 4)$$

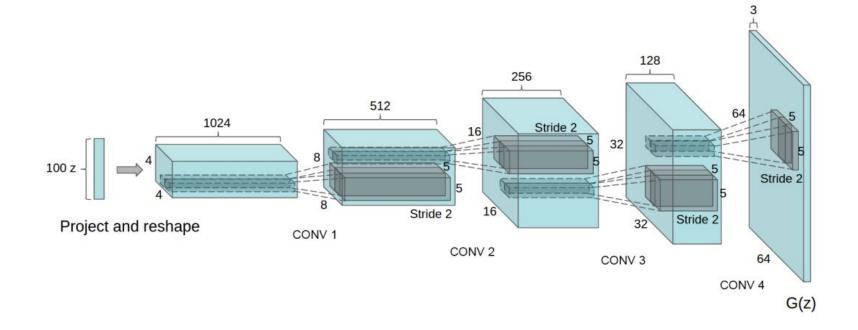
Summary: The global minimum of the minimax game happens when:

1.
$$D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$
 (Optimal discriminator for any G)
2. $p_G(x) = p_{data}(x)$ (Optimal generator for optimal D)

Generative Adversarial Networks: results



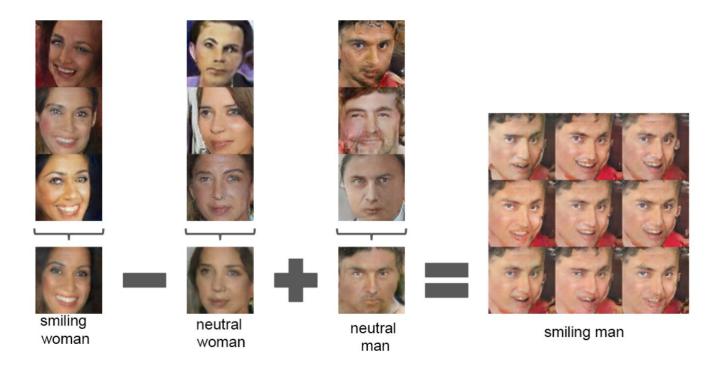
Generative Adversarial Networks: DC-GAN



Generative Adversarial Networks: Interpolation

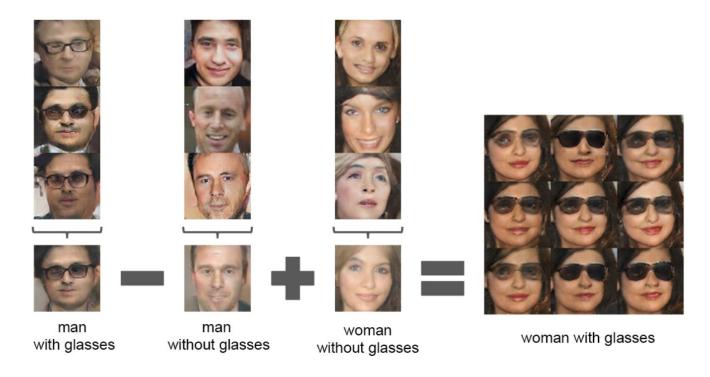
Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

Generative Adversarial Networks: Vector Math



Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

Generative Adversarial Networks: Vector Math



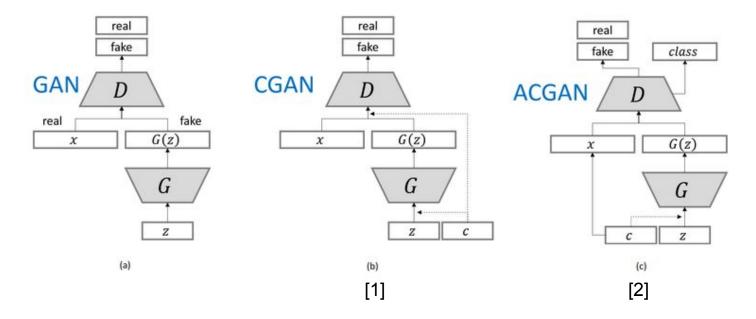
Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

GAN: Improved Loss Functions

[1] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. 2017

[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville. Improved Training of Wasserstein GANs. NeurIPS, 2017.

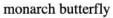
Conditional GANs



[1] Mehdi Mirza, Simon Osindero. Conditional Generative Adversarial Nets. 2014

[2] Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016

Conditional GANs



goldfinch

daisy

redshank

grey whale

Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016

Conditional GANs: BigGAN

Figure 6: Samples generated by our BigGAN model at 512×512 resolution.

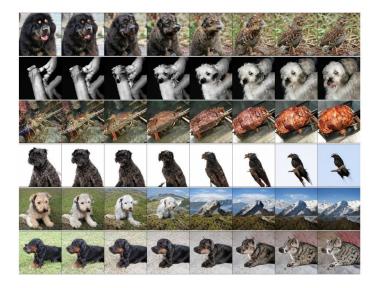
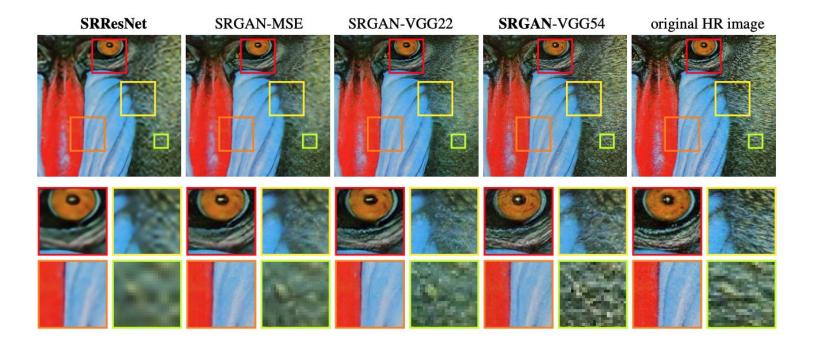
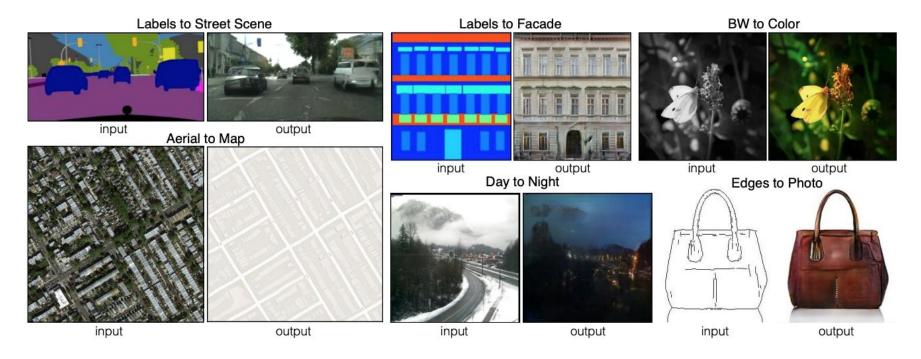


Image Super-Resolution



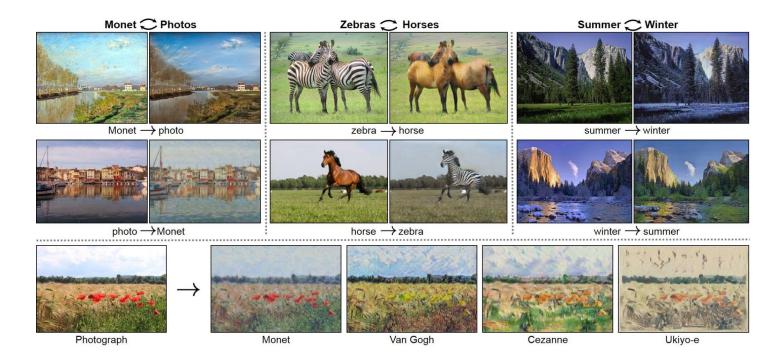
Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. CVPR 2017

Image-to-Image Translation: Pix2Pix



Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017

Unpaired Image-to-Image Translation: CycleGAN

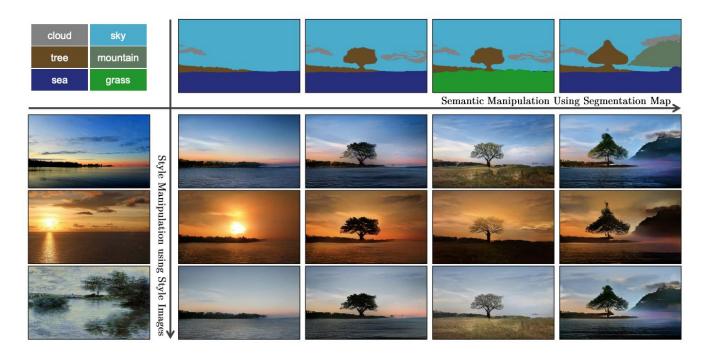


Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017

Unpaired Image-to-Image Translation: CycleGAN

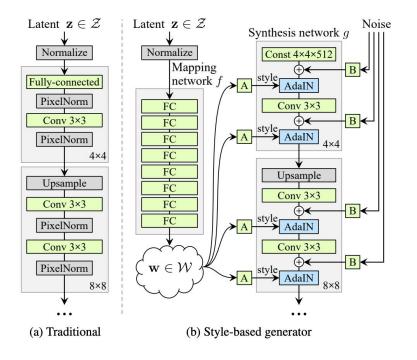
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017

Label Map to Image



Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu. Semantic Image Synthesis with Spatially-Adaptive Normalization. CVPR 2019

StyleGAN



Tero Karras, Samuli Laine, Timo Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

Video Generation



Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, Nicu Sebe. First Order Motion Model for Image Animation. NeurIPS 2019

Video Generation

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now. ICCV 2019

GAN Summary

Jointly train two networks:

Discriminator classifies data as real or fake

Generator generates data that fools the discriminator

