
Generative models

Deep Learning for Computer Vision

Valeriya Strizhkova

16 November 2021



About myself

Valeriya Strizhkova

1st year PhD student @ Inria, STARS team 

https://scholar.google.ru/citations?user=6n5PrUAAAAAJ&hl

https://github.com/valerystrizh

https://scholar.google.ru/citations?user=6n5PrUAAAAAJ&hl
https://github.com/valerystrizh


Part 1



Outline

● Basic idea of GAN

● Image generation

● Video Generation





Generative Adversarial Networks

● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .



Generative Adversarial Networks

● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .

● Idea: Introduce a latent variable z with simple prior         .



Generative Adversarial Networks

● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .

● Idea: Introduce a latent variable z with simple prior         .

● Sample               and pass to a Generator Network 



Generative Adversarial Networks

● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .

● Idea: Introduce a latent variable z with simple prior         .

● Sample               and pass to a Generator Network 

● Then x is a sample from the Generator distribution      . Want  



Generative Adversarial Networks

● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .

● Idea: Introduce a latent variable z with simple prior         .

● Sample               and pass to a Generator Network 

● Then x is a sample from the Generator distribution      . Want  
Sample z 

from      

Gz

Generator 

Network

Generator 

sample

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.



Generative Adversarial Networks

● Setup: Assume we have data     drawn from distribution              . Want to 

sample from        .

● Idea: Introduce a latent variable z with simple prior         .

● Sample               and pass to a Generator Network 

● Then x is a sample from the Generator distribution      . Want  
Sample z 

from      

Gz

Generator 

Network

Generator 

sample

Real 

sample

D

Discriminator 

Network Fake

Real

Train Discriminator Network D to 

classify data as real or fake (1/0)

Train Generator Network G to convert z 

into fake data x sampled from        

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.



Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.

Gz

Generator 

Network

Generator 

sample

Real 

sample

D

Discriminator 

Network Fake

Real

Train Discriminator Network D to 

classify data as real or fake (1/0)

Train Generator Network G to convert z 

into fake data x sampled from        by 

fooling the Discriminator D

Sample z 

from      



Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.

Gz

Generator 

Network

Generator 

sample

Real 

sample

D

Discriminator 

Network Fake

Real

Train Discriminator Network D to 

classify data as real or fake (1/0)

Train Generator Network G to convert z 

into fake data x sampled from        by 

fooling the Discriminator D

Discriminator wants D(x)=1 for 

real data

Sample z 

from      



Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.

Gz

Generator 

Network

Generator 

sample

Real 

sample

D

Discriminator 

Network Fake

Real

Train Discriminator Network D to 

classify data as real or fake (1/0)

Train Generator Network G to convert z 

into fake data x sampled from        by 

fooling the Discriminator D

Discriminator wants D(x)=0 for 

fake data

Sample z 

from      



Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.

Gz

Generator 

Network

Generator 

sample

Real 

sample

D

Discriminator 

Network Fake

Real

Train Discriminator Network D to 

classify data as real or fake (1/0)

Train Generator Network G to convert z 

into fake data x sampled from        by 

fooling the Discriminator D

Generator wants D(x)=1 for fake 

data

Sample z 

from      



Generative Adversarial Networks: Training Objective 

Jointly train generator G and discriminator D with a minimax game

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.

Train G and D using alternating gradient updates:

1. Update     : 

2. Update      



Generative Adversarial Networks: vanishing gradient 
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● Gradient goes to 0 if D is confident, i.e. 

● Minimize                                                      for generator
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Jensen-Shannon Divergence:

JSD is always nonnegative and zero when the two distributions are equal 

=> the global minimum is 



Generative Adversarial Networks: Optimality

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.

Summary: The global minimum of the minimax game happens when:

1.                                                      (Optimal discriminator for any G)

2.                                                       (Optimal generator for optimal D)



Generative Adversarial Networks: results

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS) 2014.



Generative Adversarial Networks: DC-GAN

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

https://arxiv.org/search/cs?searchtype=author&query=Metz%2C+L
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Generative Adversarial Networks: Interpolation
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Conditional GANs

[b] Mehdi Mirza, Simon Osindero. Conditional Generative Adversarial Nets. 2014

[c] Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016
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Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016



Conditional GANs: BigGAN

Andrew Brock, Jeff Donahue, Karen Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 2019 https://arxiv.org/abs/1809.11096

https://arxiv.org/abs/1809.11096


Conditional GANs: Conditional Batch Normalization

Vincent Dumoulin, Jonathon Shlens, Manjunath Kudlur, A Learned Representation For Artistic Style. ICLR 2017 https://arxiv.org/abs/1610.07629

The input activation x is normalized 

across spatial dimensions and scaled 

and shifted using style-dependent 

parameter vectors     , 

where    indexes the style label.

https://arxiv.org/abs/1610.07629


Image Super-Resolution

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi. 
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. CVPR 2017 https://arxiv.org/abs/1609.04802
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Image-to-Image Translation: Pix2Pix

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017 https://arxiv.org/abs/1611.07004

https://arxiv.org/abs/1611.07004
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Objective:
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Unpaired Image-to-Image Translation: CycleGAN

Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017 
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Label Map to Image

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu. Semantic Image Synthesis with Spatially-Adaptive Normalization. CVPR 2019 https://arxiv.org/abs/1903.07291
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StyleGAN

Tero Karras, Samuli Laine, Timo Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019



Video Generation
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Video Generation. Everybody Dance Now

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now. ICCV 2019
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GAN Summary

Jointly train two networks:

Discriminator classifies data as real or fake

Generator generates data that fools the discriminator
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Outline

● Variational Autoencoders (VAE)

● Mode collapse

● Wasserstein GAN

● GAN evaluation
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Autoencoders (non-variational)

Autoencoder learns latent features for data without 

any labels.

Features need to be low dimensional than the data.

Limitation: no way to produce any new content

Encoder

Input data

Features

Decoder

Reconstructed 

input data



Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

● VAE is an autoencoder whose training is regularised to avoid overfitting and 

ensure that the latent space has good properties that enable generative 

process.

https://arxiv.org/abs/1312.6114
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Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

● VAE is an autoencoder whose training is regularised to avoid overfitting and 

ensure that the latent space has good properties that enable generative 

process.

● Instead of encoding an input as a single point, VAE encodes it as a 

distribution over the latent space.

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Encoder network inputs data x and outputs distribution over latent codes z

Encoder Network
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Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Decoder neural network represent p(x|z) where x is an image, z is latent factors to generate x.

Assume prior p(z), e.g. Gaussian.

How to train this model?

Maximize likelihood of data

https://arxiv.org/abs/1312.6114
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Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Maximize likelihood of data

If we could observe z for each x, then we could train conditional generative model p(x|z) :
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Maximize likelihood of data

If we could observe z for each x, then we could train conditional generative model p(x|z) :

Problem: impossible to integrate over all z

https://arxiv.org/abs/1312.6114
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Maximize likelihood of data

Bayes’ Rule: 
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Bayes’ Rule: 
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Variational Autoencoders (VAE)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 https://arxiv.org/abs/1312.6114

Maximize likelihood of data

Bayes’ Rule: 

Problem: no way to compute

Solution: train another network (encoder) that learns 

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAE)

Encoder network inputs data x and outputs distribution over latent codes z

Decoder network inputs latent code z and outputs distribution over data x

Encoder Network Decoder Network



Variational Autoencoders (VAE)

Jointly train encoder q and decoder p 

Encoder Network Decoder Network
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Variational Autoencoders (VAE)

Kullback-Leibler Divergence:



Variational Autoencoders (VAE)

Kullback-Leibler Divergence:

=> dropping the last term gives a lower bound on the data likelihood 



Variational Autoencoders (VAE)



Variational Autoencoders (VAE)

Jointly train encoder q and decoder p to maximize the variational lower bound

on the data likelihood

Encoder Network Decoder Network



Variational Autoencoders (VAE)

Closed form solution when      is diagonal Gaussian and p is unit Gaussian:



Variational Autoencoders (VAE)

Closed form solution when      is diagonal Gaussian and p is unit Gaussian:

is data reconstruction term



Variational Autoencoders (VAE)

Learned data manifold for generative models with two-dimensional latent space:

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes, ICLR 2014 https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1312.6114


Variational Autoencoders. Summary

Pros:

● Allows inference of          , can be useful feature representation for other tasks

Cons:

● Generated images are blurrier than lower quality compared to state-of-the-art (GAN)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes, ICLR 2014 https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1312.6114


Generative Models Summary

● Variational Autoencoders (VAEs) introduces a latent z and maximize a 

lower bound:

Latent z allows for interpolation and editing applications

● Generative Adversarial Networks (GANs) do not model p(x) but allow us to 

draw samples from p(x). Difficult to evaluate but best qualitative results today



Problems of GANs

● Mode collapse:
○ G collapses providing limited sample variety

● Non-convergence:
○ model parameters oscillate, destabilize and never converge

● Diminished gradient:
○ D is so successful that the G gradient vanishes and learns nothing



Mode collapse

Real-life data is multimodal (10 in MNIST)

Mode collapse: when few modes generated



Partial mode collapse

The generator produces realistic and 

diverse samples, but much less diverse 

than the real-world data distribution.



Solutions to mode collapse

● Wasserstein loss [1]
○ Trains the discriminator to optimality without worrying about vanishing gradients.

○ If the discriminator doesn't get stuck in local minima, it learns to reject the outputs that the 

generator stabilizes on.

● Unrolling [2]
○ Uses a generator loss function that incorporates not only the current discriminator's 

classifications, but also the outputs of future discriminator versions

○ The generator can't over-optimize for a single discriminator.

[1] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. 2017 https://arxiv.org/abs/1701.07875

[2] Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein. Unrolled Generative Adversarial Networks. https://arxiv.org/abs/1611.02163

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1611.02163


Wasserstein GAN. Criticizing is easy

Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. 2017 https://arxiv.org/abs/1701.07875

● GAN can optimize the discriminator easier than the generator.
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● GAN can optimize the discriminator easier than the generator.

● An optimal discriminator produces good information for the generator to 

improve. But if the generator is not doing a good job yet, the gradient for the 

generator diminishes and the generator learns nothing

Original GAN generator’s gradient:

Alternative:

Problem: large variance of gradients 

that make the model unstable

https://arxiv.org/abs/1701.07875
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where

● sup is the least upper bound

● f is a 1-Lipschitz function following 

constraint:

We can build a deep network to calculate the 
Wasserstein distance.

This network is very similar to the discriminator, 
just without the sigmoid function and outputs a 
scalar score rather than a probability.

https://arxiv.org/abs/1701.07875
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● Wasserstein criterion allows us to train D until optimality. When the criterion reaches the optimal 

value, it simply provides a loss to the generator that we can train as any other neural network.
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● Wasserstein criterion allows us to train D until optimality. When the criterion reaches the optimal 

value, it simply provides a loss to the generator that we can train as any other neural network.

● We no longer need to balance G and D capacity properly.

● Wasserstein loss leads to a higher quality of the gradients to train G.

● WGANs are more robust than common GANs to the architectural choices for the generator and 

hyperparameter tuning

https://arxiv.org/abs/1701.07875


GANs evaluation

The objective function for the generator and the discriminator usually measures 

how well they are doing relative to the opponent.

It is not a good metric in measuring the image quality or its diversity.



GANs evaluation

● Inception Score (IS) [1]

● Frechet Inception Distance (FID) [2]

● Human-based ratings and preference judgments

[1] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

NeurIPS 2017 https://arxiv.org/abs/1706.08500
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Inception Score (IS)

IS uses two criteria in measuring the performance of GAN:

● The quality of the generated images

● their diversity
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Inception Score (IS)

● Quality: use an Inception network to predict conditional probability p(y|x) —

where y is the label and x is the generated data

● Diversity: calculate marginal probability:

We want

● the conditional probability p(y|x) to be highly predictable (low entropy)  i.e. 

given an image, we should know the object type easily

● the data distribution p(y) should be uniform (high entropy)

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498
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Inception Score (IS)

Compute their KL-divergence to combine these two criteria:

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498
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Inception Score (IS)

Limitations:

● IS is limited by what the Inception classifier can detect, which is linked to the 

training data (ILSVRC)

● IS can misrepresent the performance if it only generates one image per class. 

p(y) will still be uniform even though the diversity is low

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1606.03498


Frechet Inception Distance (FID)

● Use the Inception network to extract features from an intermediate layer
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Frechet Inception Distance (FID)

● Use the Inception network to extract features from an intermediate layer

● Model data distribution for these features using a multivariate Gaussian 

distribution with mean µ and covariance Σ

● The FID between the real images x and generated images g:

where Tr sums up all the diagonal elements

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

NeurIPS 2017 https://arxiv.org/abs/1706.08500
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Frechet Inception Distance (FID)

● Lower FID values mean better image quality and diversity

● FID is sensitive to mode collapse, the distance increases when modes are 

missed

● FID is more robust to noise than IS. If the model only generates one image 

per class, the distance will be high

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. 

NeurIPS 2017 https://arxiv.org/abs/1706.08500
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